
124

Zend_Acl

1. Introduction

Zend_Acl provides a lightweight and flexible access control list (ACL) implementation for

privileges management. In general, an application may utilize such ACL's to control access to

certain protected objects by other requesting objects.

For the purposes of this documentation:

• a resource is an object to which access is controlled.

• a role is an object that may request access to a Resource.

Put simply, roles request access to resources. For example, if a parking attendant requests

access to a car, then the parking attendant is the requesting role, and the car is the resource,

since access to the car may not be granted to everyone.

Through the specification and use of an ACL, an application may control how roles are granted

access to resources.

1.1. Resources

Creating a resource in Zend_Acl is very simple. Zend_Acl provides the resource,

Zend_Acl_Resource_Interface, to facilitate creating resources in an application. A class

need only implement this interface, which consists of a single method, getResourceId(), for

Zend_Acl to recognize the object as a resource. Additionally, Zend_Acl_Resource is provided

by Zend_Acl as a basic resource implementation for developers to extend as needed.

Zend_Acl provides a tree structure to which multiple resources can be added. Since resources

are stored in such a tree structure, they can be organized from the general (toward the tree

root) to the specific (toward the tree leaves). Queries on a specific resource will automatically

search the resource's hierarchy for rules assigned to ancestor resources, allowing for simple

inheritance of rules. For example, if a default rule is to be applied to each building in a city, one

would simply assign the rule to the city, instead of assigning the same rule to each building.

Some buildings may require exceptions to such a rule, however, and this can be achieved in

Zend_Acl by assigning such exception rules to each building that requires such an exception.

A resource may inherit from only one parent resource, though this parent resource can have its

own parent resource, etc.

Zend_Acl also supports privileges on resources (e.g., "create", "read", "update", "delete"), so

the developer can assign rules that affect all privileges or specific privileges on one or more

resources.

1.2. Roles

As with resources, creating a role is also very simple. All roles must implement

Zend_Acl_Role_Interface. This interface consists of a single method, getRoleId(),

Additionally, Zend_Acl_Role is provided by Zend_Acl as a basic role implementation for

developers to extend as needed.

In Zend_Acl, a role may inherit from one or more roles. This is to support inheritance of rules

among roles. For example, a user role, such as "sally", may belong to one or more parent

Zend_Acl

125

roles, such as "editor" and "administrator". The developer can assign rules to "editor" and

"administrator" separately, and "sally" would inherit such rules from both, without having to assign

rules directly to "sally".

Though the ability to inherit from multiple roles is very useful, multiple inheritance also introduces

some degree of complexity. The following example illustrates the ambiguity condition and how

Zend_Acl solves it.

Example 28. Multiple Inheritance among Roles

The following code defines three base roles - "guest", "member", and "admin" - from which

other roles may inherit. Then, a role identified by "someUser" is established and inherits

from the three other roles. The order in which these roles appear in the $parents array

is important. When necessary, Zend_Acl searches for access rules defined not only for

the queried role (herein, "someUser"), but also upon the roles from which the queried role

inherits (herein, "guest", "member", and "admin"):

$acl = new Zend_Acl();

$acl->addRole(new Zend_Acl_Role('guest'))
 ->addRole(new Zend_Acl_Role('member'))
 ->addRole(new Zend_Acl_Role('admin'));

$parents = array('guest', 'member', 'admin');
$acl->addRole(new Zend_Acl_Role('someUser'), $parents);

$acl->add(new Zend_Acl_Resource('someResource'));

$acl->deny('guest', 'someResource');
$acl->allow('member', 'someResource');

echo $acl->isAllowed('someUser', 'someResource') ? 'allowed' : 'denied';

Since there is no rule specifically defined for the "someUser" role and "someResource",

Zend_Acl must search for rules that may be defined for roles that "someUser" inherits.

First, the "admin" role is visited, and there is no access rule defined for it. Next, the "member"

role is visited, and Zend_Acl finds that there is a rule specifying that "member" is allowed

access to "someResource".

If Zend_Acl were to continue examining the rules defined for other parent roles, however,

it would find that "guest" is denied access to "someResource". This fact introduces an

ambiguity because now "someUser" is both denied and allowed access to "someResource",

by reason of having inherited conflicting rules from different parent roles.

Zend_Acl resolves this ambiguity by completing a query when it finds the first rule that is

directly applicable to the query. In this case, since the "member" role is examined before the

"guest" role, the example code would print "allowed".

When specifying multiple parents for a role, keep in mind that the last parent

listed is the first one searched for rules applicable to an authorization query.

1.3. Creating the Access Control List

An Access Control List (ACL) can represent any set of physical or virtual objects that you wish.

For the purposes of demonstration, however, we will create a basic Content Management System

Zend_Acl

126

(CMS) ACL that maintains several tiers of groups over a wide variety of areas. To create a new

ACL object, we instantiate the ACL with no parameters:

$acl = new Zend_Acl();

Until a developer specifies an "allow" rule, Zend_Acl denies access to every

privilege upon every resource by every role.

1.4. Registering Roles

CMS's will nearly always require a hierarchy of permissions to determine the authoring

capabilities of its users. There may be a 'Guest' group to allow limited access for demonstrations,

a 'Staff' group for the majority of CMS users who perform most of the day-to-day operations,

an 'Editor' group for those responsible for publishing, reviewing, archiving and deleting content,

and finally an 'Administrator' group whose tasks may include all of those of the other groups as

well as maintenance of sensitive information, user management, back-end configuration data,

backup and export. This set of permissions can be represented in a role registry, allowing each

group to inherit privileges from 'parent' groups, as well as providing distinct privileges for their

unique group only. The permissions may be expressed as follows:

Table 1. Access Controls for an Example CMS

Name Unique Permissions Inherit Permissions From

Guest View N/A

Staff Edit, Submit, Revise Guest

Editor Publish, Archive, Delete Staff

Administrator (Granted all access) N/A

For this example, Zend_Acl_Role is used, but any object that implements

Zend_Acl_Role_Interface is acceptable. These groups can be added to the role registry

as follows:

$acl = new Zend_Acl();

// Add groups to the Role registry using Zend_Acl_Role
// Guest does not inherit access controls
$roleGuest = new Zend_Acl_Role('guest');
$acl->addRole($roleGuest);

// Staff inherits from guest
$acl->addRole(new Zend_Acl_Role('staff'), $roleGuest);

/*
Alternatively, the above could be written:
$acl->addRole(new Zend_Acl_Role('staff'), 'guest');
*/

// Editor inherits from staff
$acl->addRole(new Zend_Acl_Role('editor'), 'staff');

// Administrator does not inherit access controls
$acl->addRole(new Zend_Acl_Role('administrator'));

Zend_Acl

127

1.5. Defining Access Controls

Now that the ACL contains the relevant roles, rules can be established that define how resources

may be accessed by roles. You may have noticed that we have not defined any particular

resources for this example, which is simplified to illustrate that the rules apply to all resources.

Zend_Acl provides an implementation whereby rules need only be assigned from general to

specific, minimizing the number of rules needed, because resources and roles inherit rules that

are defined upon their ancestors.

In general, Zend_Acl obeys a given rule if and only if a more specific rule does

not apply.

Consequently, we can define a reasonably complex set of rules with a minimum amount of code.

To apply the base permissions as defined above:

$acl = new Zend_Acl();

$roleGuest = new Zend_Acl_Role('guest');
$acl->addRole($roleGuest);
$acl->addRole(new Zend_Acl_Role('staff'), $roleGuest);
$acl->addRole(new Zend_Acl_Role('editor'), 'staff');
$acl->addRole(new Zend_Acl_Role('administrator'));

// Guest may only view content
$acl->allow($roleGuest, null, 'view');

/*
Alternatively, the above could be written:
$acl->allow('guest', null, 'view');
//*/

// Staff inherits view privilege from guest, but also needs additional
// privileges
$acl->allow('staff', null, array('edit', 'submit', 'revise'));

// Editor inherits view, edit, submit, and revise privileges from
// staff, but also needs additional privileges
$acl->allow('editor', null, array('publish', 'archive', 'delete'));

// Administrator inherits nothing, but is allowed all privileges
$acl->allow('administrator');

The NULL values in the above allow() calls are used to indicate that the allow rules apply to

all resources.

1.6. Querying an ACL

We now have a flexible ACL that can be used to determine whether requesters have permission

to perform functions throughout the web application. Performing queries is quite simple using

the isAllowed() method:

echo $acl->isAllowed('guest', null, 'view') ?
 "allowed" : "denied";
// allowed

echo $acl->isAllowed('staff', null, 'publish') ?

Zend_Acl

128

 "allowed" : "denied";
// denied

echo $acl->isAllowed('staff', null, 'revise') ?
 "allowed" : "denied";
// allowed

echo $acl->isAllowed('editor', null, 'view') ?
 "allowed" : "denied";
// allowed because of inheritance from guest

echo $acl->isAllowed('editor', null, 'update') ?
 "allowed" : "denied";
// denied because no allow rule for 'update'

echo $acl->isAllowed('administrator', null, 'view') ?
 "allowed" : "denied";
// allowed because administrator is allowed all privileges

echo $acl->isAllowed('administrator') ?
 "allowed" : "denied";
// allowed because administrator is allowed all privileges

echo $acl->isAllowed('administrator', null, 'update') ?
 "allowed" : "denied";
// allowed because administrator is allowed all privileges

2. Refining Access Controls

2.1. Precise Access Controls

The basic ACL as defined in the previous section shows how various privileges may be

allowed upon the entire ACL (all resources). In practice, however, access controls tend to

have exceptions and varying degrees of complexity. Zend_Acl allows to you accomplish these

refinements in a straightforward and flexible manner.

For the example CMS, it has been determined that whilst the 'staff' group covers the needs of

the vast majority of users, there is a need for a new 'marketing' group that requires access to the

newsletter and latest news in the CMS. The group is fairly self-sufficient and will have the ability

to publish and archive both newsletters and the latest news.

In addition, it has also been requested that the 'staff' group be allowed to view news stories but

not to revise the latest news. Finally, it should be impossible for anyone (administrators included)

to archive any 'announcement' news stories since they only have a lifespan of 1-2 days.

First we revise the role registry to reflect these changes. We have determined that the 'marketing'

group has the same basic permissions as 'staff', so we define 'marketing' in such a way that it

inherits permissions from 'staff':

// The new marketing group inherits permissions from staff
$acl->addRole(new Zend_Acl_Role('marketing'), 'staff');

Next, note that the above access controls refer to specific resources (e.g., "newsletter", "latest

news", "announcement news"). Now we add these resources:

// Create Resources for the rules

Zend_Acl

129

// newsletter
$acl->addResource(new Zend_Acl_Resource('newsletter'));

// news
$acl->addResource(new Zend_Acl_Resource('news'));

// latest news
$acl->addResource(new Zend_Acl_Resource('latest'), 'news');

// announcement news
$acl->addResource(new Zend_Acl_Resource('announcement'), 'news');

Then it is simply a matter of defining these more specific rules on the target areas of the ACL:

// Marketing must be able to publish and archive newsletters and the
// latest news
$acl->allow('marketing',
 array('newsletter', 'latest'),
 array('publish', 'archive'));

// Staff (and marketing, by inheritance), are denied permission to
// revise the latest news
$acl->deny('staff', 'latest', 'revise');

// Everyone (including administrators) are denied permission to
// archive news announcements
$acl->deny(null, 'announcement', 'archive');

We can now query the ACL with respect to the latest changes:

echo $acl->isAllowed('staff', 'newsletter', 'publish') ?
 "allowed" : "denied";
// denied

echo $acl->isAllowed('marketing', 'newsletter', 'publish') ?
 "allowed" : "denied";
// allowed

echo $acl->isAllowed('staff', 'latest', 'publish') ?
 "allowed" : "denied";
// denied

echo $acl->isAllowed('marketing', 'latest', 'publish') ?
 "allowed" : "denied";
// allowed

echo $acl->isAllowed('marketing', 'latest', 'archive') ?
 "allowed" : "denied";
// allowed

echo $acl->isAllowed('marketing', 'latest', 'revise') ?
 "allowed" : "denied";
// denied

echo $acl->isAllowed('editor', 'announcement', 'archive') ?
 "allowed" : "denied";
// denied

echo $acl->isAllowed('administrator', 'announcement', 'archive') ?

Zend_Acl

130

 "allowed" : "denied";
// denied

2.2. Removing Access Controls

To remove one or more access rules from the ACL, simply use the available removeAllow()
or removeDeny() methods. As with allow() and deny(), you may provide a NULL value to

indicate application to all roles, resources, and/or privileges:

// Remove the denial of revising latest news to staff (and marketing,
// by inheritance)
$acl->removeDeny('staff', 'latest', 'revise');

echo $acl->isAllowed('marketing', 'latest', 'revise') ?
 "allowed" : "denied";
// allowed

// Remove the allowance of publishing and archiving newsletters to
// marketing
$acl->removeAllow('marketing',
 'newsletter',
 array('publish', 'archive'));

echo $acl->isAllowed('marketing', 'newsletter', 'publish') ?
 "allowed" : "denied";
// denied

echo $acl->isAllowed('marketing', 'newsletter', 'archive') ?
 "allowed" : "denied";
// denied

Privileges may be modified incrementally as indicated above, but a NULL value for the privileges

overrides such incremental changes:

// Allow marketing all permissions upon the latest news
$acl->allow('marketing', 'latest');

echo $acl->isAllowed('marketing', 'latest', 'publish') ?
 "allowed" : "denied";
// allowed

echo $acl->isAllowed('marketing', 'latest', 'archive') ?
 "allowed" : "denied";
// allowed

echo $acl->isAllowed('marketing', 'latest', 'anything') ?
 "allowed" : "denied";
// allowed

3. Advanced Usage

3.1. Storing ACL Data for Persistence

Zend_Acl was designed in such a way that it does not require any particular backend technology

such as a database or cache server for storage of the ACL data. Its complete PHP implementation

enables customized administration tools to be built upon Zend_Acl with relative ease and

Zend_Acl

131

flexibility. Many situations require some form of interactive maintenance of the ACL, and

Zend_Acl provides methods for setting up, and querying against, the access controls of an

application.

Storage of ACL data is therefore left as a task for the developer, since use cases are expected

to vary widely for various situations. Because Zend_Acl is serializable, ACL objects may be

serialized with PHP's serialize() function, and the results may be stored anywhere the

developer should desire, such as a file, database, or caching mechanism.

3.2. Writing Conditional ACL Rules with Assertions

Sometimes a rule for allowing or denying a role access to a resource should not be absolute

but dependent upon various criteria. For example, suppose that certain access should be

allowed, but only between the hours of 8:00am and 5:00pm. Another example would be denying

access because a request comes from an IP address that has been flagged as a source of

abuse. Zend_Acl has built-in support for implementing rules based on whatever conditions the

developer needs.

Zend_Acl provides support for conditional rules with Zend_Acl_Assert_Interface. In order

to use the rule assertion interface, a developer writes a class that implements the assert()
method of the interface:

class CleanIPAssertion implements Zend_Acl_Assert_Interface
{
 public function assert(Zend_Acl $acl,
 Zend_Acl_Role_Interface $role = null,
 Zend_Acl_Resource_Interface $resource = null,
 $privilege = null)
 {
 return $this->_isCleanIP($_SERVER['REMOTE_ADDR']);
 }

 protected function _isCleanIP($ip)
 {
 // ...
 }
}

Once an assertion class is available, the developer must supply an instance of the assertion

class when assigning conditional rules. A rule that is created with an assertion only applies when

the assertion method returns TRUE.

$acl = new Zend_Acl();
$acl->allow(null, null, null, new CleanIPAssertion());

The above code creates a conditional allow rule that allows access to all privileges on everything

by everyone, except when the requesting IP is "blacklisted." If a request comes in from an IP that

is not considered "clean," then the allow rule does not apply. Since the rule applies to all roles, all

resources, and all privileges, an "unclean" IP would result in a denial of access. This is a special

case, however, and it should be understood that in all other cases (i.e., where a specific role,

resource, or privilege is specified for the rule), a failed assertion results in the rule not applying,

and other rules would be used to determine whether access is allowed or denied.

The assert() method of an assertion object is passed the ACL, role, resource, and privilege

to which the authorization query (i.e., isAllowed()) applies, in order to provide a context for

the assertion class to determine its conditions where needed.

